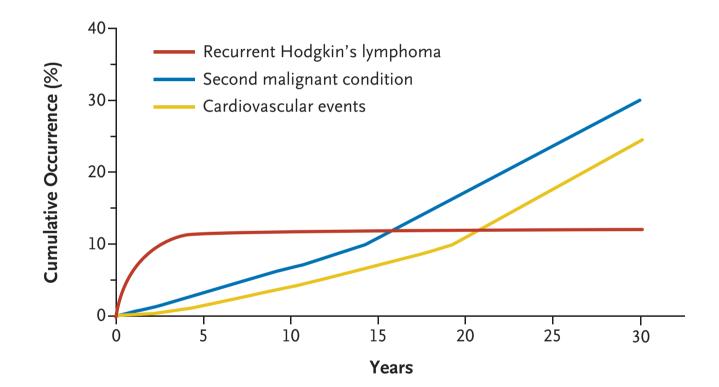


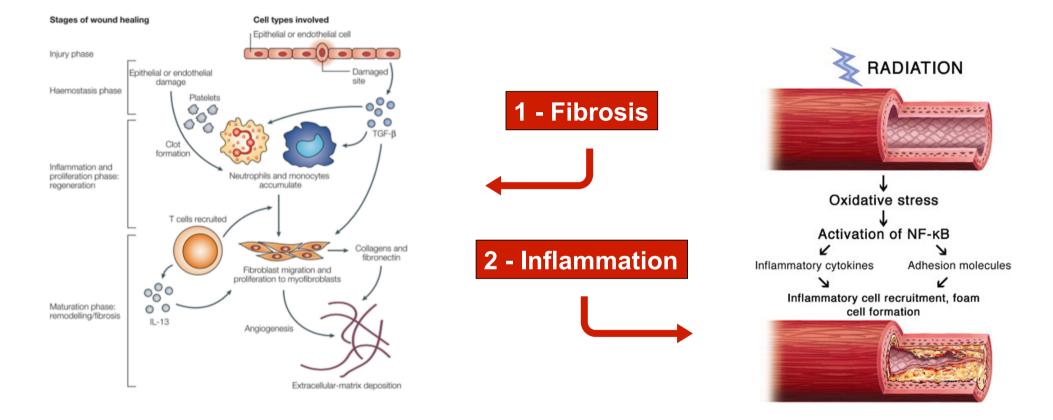
Treviso, 23-24 novembre 2018

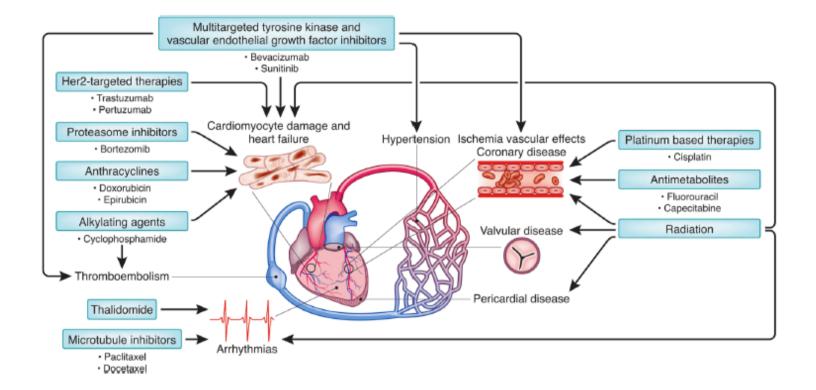

Danno cardiaco jatrogeno

Tossicità cardiaca da radioterapia

Mario Levis

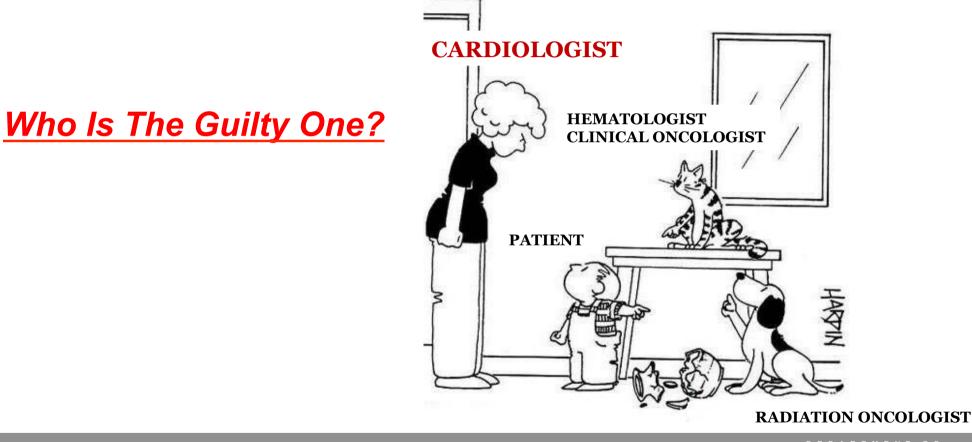
Dipartimento di Oncologia, Università di Torino


The price of success: Long term complications


Pathogenesis of RIHD

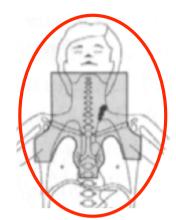
Taunk N. et al. Front Oncol 2015

DEPARTMENT OF ONC LOGY


RIHD: the *"enhancing"* role of combined systemic therapies

Lenneman CG. & Sawyer DB. Circ. Res. 2016

Treatment Related Cardiac Events In Long Term Cancer Survivors...

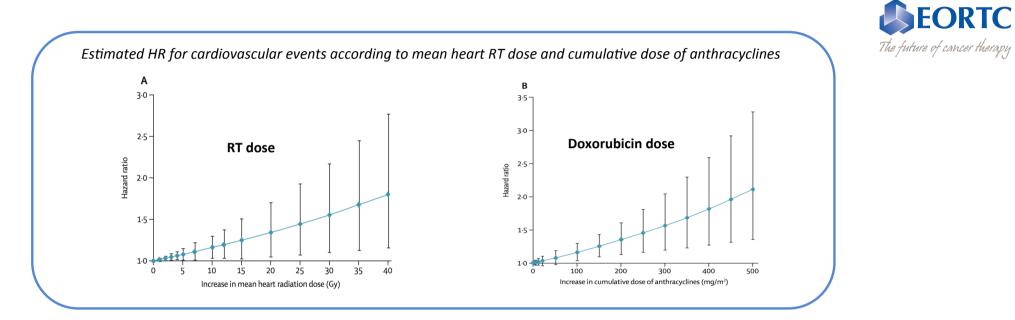

DEPARTMENT OF ONC UNIVERSITY OF TURIN

Late cardiotoxicity after treatment for Hodgkin lymphoma

Berthe M. P. Aleman,¹ Alexandra W. van den Belt-Dusebout,² Marie L. De Bruin,² Mars B. van 't Veer,³ Margreet H. A. Baaijens,⁴ Jan Paul de Boer,⁵ Augustinus A. M. Hart,¹ Willem J. Klokman,² Marianne A. Kuenen,² Gabey M. Ouwens,² Harry Bartelink,¹ and Flora E. van Leeuwen²

- ✓ 1474 pts
- ✓ Enrollement: 1965-1995 (median follow-up 18,7 years)
- ✓ 1241 mediastinal RT (87%)
- ✓ 40 Gy/20 fr (RT) or 30-36 Gy (RT-CT)

Risk factor	MI	AP	CHF*	Valvular disorders
Model 1, no. of events	102	129	82	159
Treatment, HR (95% CI)†				
Mediastinal RT (yes vs no)	2.42 (1.12-5.24)	4.85 (1.97-11.9)	7.37 (1.81-30.0)	7.01 (2.59-18.9)
Anthracycline-containing CT (yes vs no)	0.90 (0.50-1.62)	1.49 (0.89-2.49)	2.44 (1.37-4.33)	2.24 (1.40-3.59)
Cardiovascular risk factors, HR (95% CI)				
Recent smoking (yes vs no/unknown)	2.04 (1.29-3.23)	1.35 (0.85-2.16)	1.96 (1.16-3.30)	1.23 (0.80-1.88)
Hypertension (yes vs no/unknown)‡	0.52 (0.29-0.94)	0.90 (0.58-1.42)	1.07 (0.59-1.94)	1.28 (0.86-1.92)
Hypercholesterolemia (yes vs no/unknown)‡	4.12 (2.68-6.33)	4.55 (3.10-6.68)	1.48 (0.85-2.58)	1.65 (1.11-2.44)
Diabetes mellitus (yes vs no/unknown)‡	1.44 (0.73-2.83)	2.43 (1.45-4.09)	4.45 (2.54-7.81)	1.81 (1.07-3.04)
Model 2, no. of events	95	124	80	155
Treatment group, HR (95% CI)§				
Mediastinal RT only	1.00	1.00	1.00	1.00
Mediastinal RT + CT, no anthracyclines	1.17 (0.75-1.83)	0.78 (0.53-1.15)	1.33 (0.79-2.24)	0.85 (0.60-1.21)
Mediastinal RT + CT, anthracyclines#	1.00 (0.52-1.94)	1.32 (0.76-2.30)	2.81 (1.44-5.49)	2.10 (1.27-3.48)


Aleman B et al. Blood 2007;109(5):1878-1886

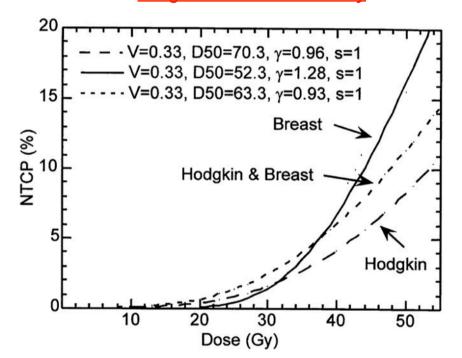
DEPARTMENT OF

ONC LOGY

NIVERSITY OF TURIN

Chemotherapy VS Radiotherapy... What is more toxic?

Example: an increase in mean heart dose of 5 Gy yields the same excess risk of cardiac events as an increase in cumulative anthracycline dose of 50 mg/m2 (≈1 cycle of ABVD or R-CHOP)



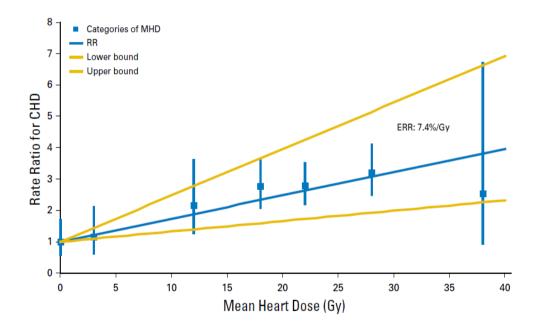
Maraldo MV et al. Lancet Haematol 2015

DEPARTMENT OF ONC LOGY UNIVERSITY OF TURIN

DOSE-RESPONSE RELATIONSHIP: complex and heterogeneous models

- If we consider Heart Dose, response curves are unstable and variable due to:
 - Different radiated substructures
 - Concomitant cardiovascular risk factors

Gagliardi G. et al. IJROBP 2010



Long Term Cardiac Mortality

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Radiation Dose-Response Relationship for Risk of Coronary Heart Disease in Survivors of Hodgkin Lymphoma

Impact of Cardiovascular risk factors

Risk Factors	RR	95% CI	p value
NONE	1	-	-
Diabetes mellitus	1.98	1.41 to 2.77	< 0.001
Hypercholesterolemia	2.08	1.60 to 2.72	< 0.001
Hypertension	1.52	1.18 to 1.96	< 0.001
>1 risk factors	2.51	1.84 to 3.44	< 0.001

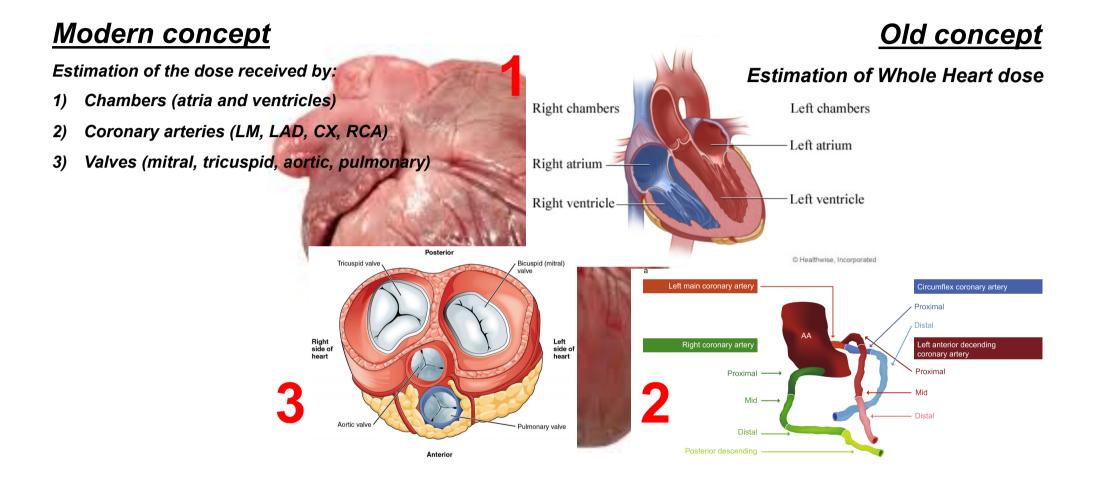
van Nimwegen et al. JCO 2016

Prevention Of Treatment Related Cardiac Events Is Pivotal, So... How Can We Prevent Radiation-Induced Cardiac Complications ?

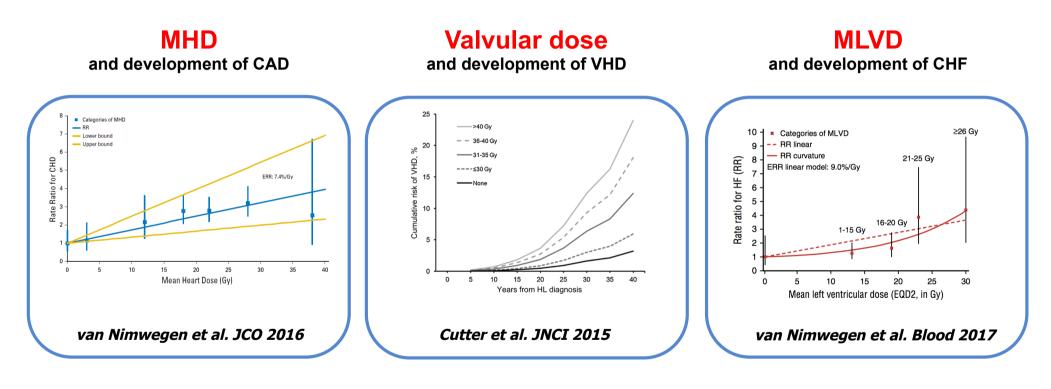
PRIMARY PREVENTION

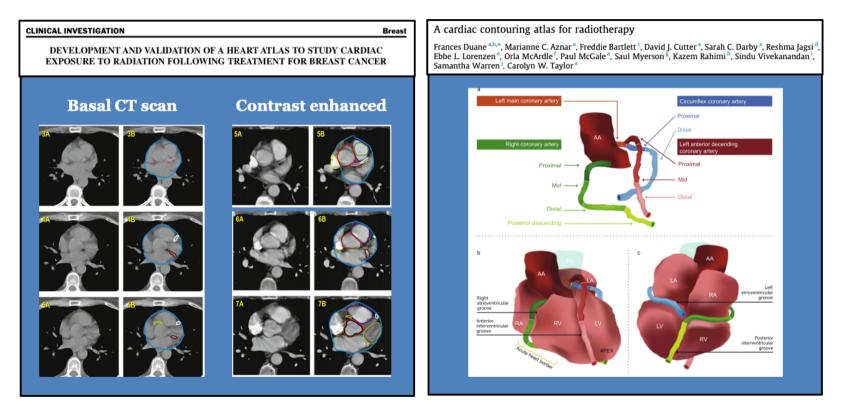
- □ Avoidance/reduction of cardiotoxic treatments
- Technical improvement
- □ Management of cardiac risk factors
- □ Cardioprotective drugs

SECONDARY PREVENTION (early diagnosis)


- Diagnostic tools
 - 1. Biomarkers (Troponine, NTproBNP, miRNA)
 - 2. Echocardiography
 - 3. Cardiac MRI
 - 4. Coronary angiography CT scan

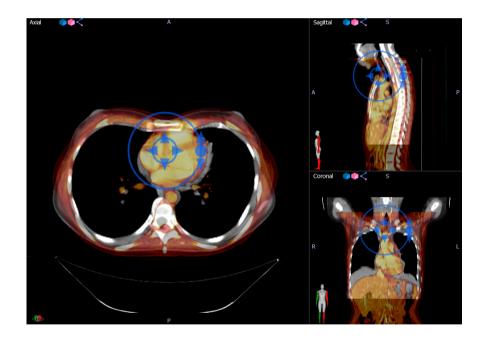
1


PROSPECTIVE AND DETAILED CONTOURING OF THE HEART STRUCTURES

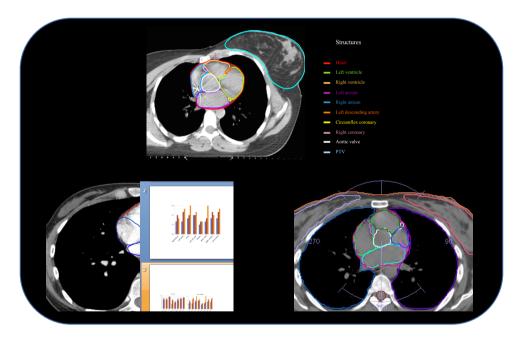

DEPARTMENT OF ONC LOGY

Correlation between heart (substructures) dose and cardiac events

CONTOURING OF THE HEART STRUCTURES


Feng M et al. IJROBP 2011

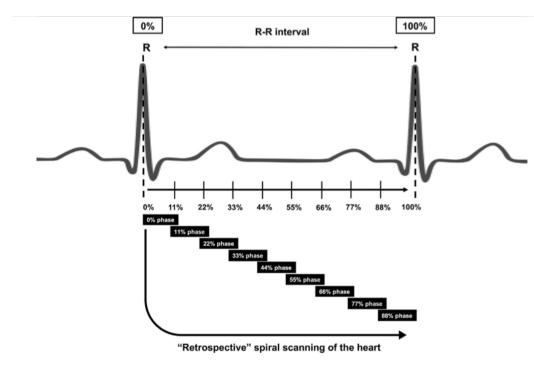
Duane F. et al. Radiother Oncol 2018

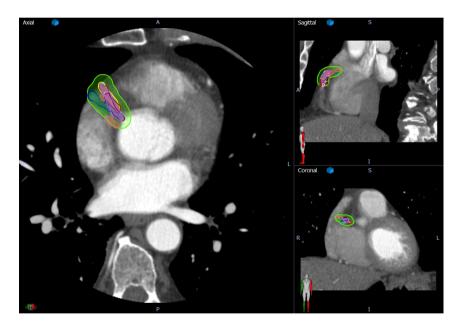


TREATMENT PLANNING

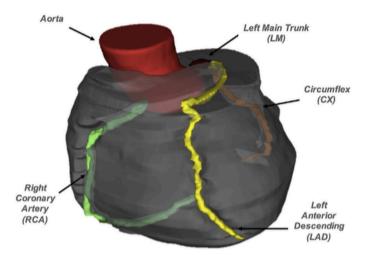
1 – Deformable registration

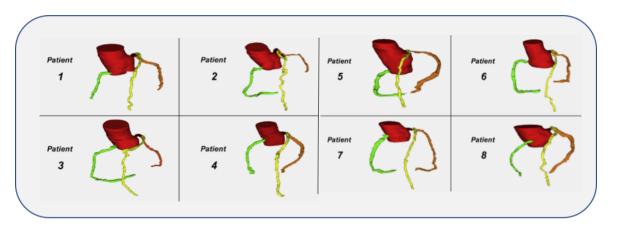
2 – Accurate contouring of cardiac structures




DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

Plan optimization for mediastinal radiotherapy: Estimation of coronary arteries motion with ECG-gated cardiac imaging and creation of compensatory expansion margins


Mario Levis^a, Viola De Luca^a, Christian Fiandra^a, Simona Veglia^b, Antonella Fava^c, Marco Gatti^d, Mauro Giorgi^c, Sara Bartoncini^a, Federica Cadoni^a, Domenica Garabello^b, Riccardo Ragona^e, Andrea Riccardo Filippi^{e,*}, Umberto Ricardi^{a,e}



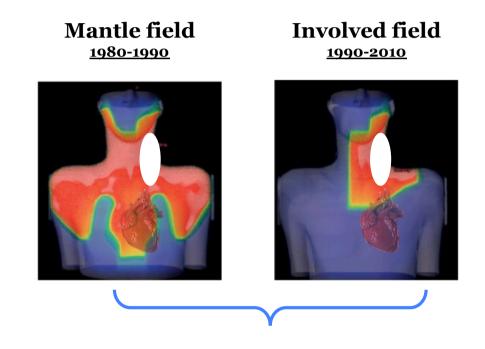
Levis M. et al. Radiot & Oncol 2018

Table 1

Mean coronary arteries displacements evaluated with the McKenzie-van Herk formula [15] for organs at risk (*m*PRV = $1.3 \times \Sigma + 0.5 \times \sigma$), for the overall population of 8 patients.

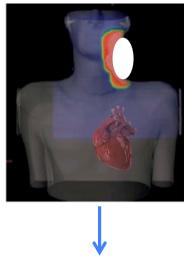
Coronary artery	Displacement (mm)			Suggested PRV margin (mm)	
	Left-Right (X) Σ and σ	Cranio-caudal (Y) Σ and σ	Antero-posterior (Z) Σ and σ		
Left main trunk (LM)	3.6	2.7	2.7	3	
	0.215 and 0.169	0.143 and 0.177	0.143 and 0.162		
Left anterior descending (LAD)	2.6	5.0	6.8	5	
	0.143 and 0.154	0.228 and 0.395	0.413 and 0.291		
Circumflex (CX)	3.5	4.5	3.7	4	
	0.196 and 0.179	0.239 and 0.283	0.183 and 0.256		
Right (RCA)	3.6	4.6	6.9	5	
	0.169 and 0.276	0.232 and 0.324	0.355 and 0.446		

Levis M. et al. Radiot & Oncol 2018



2

"CHOOSING WISELY"... RT OFFER TAILORED TO THE PATIENTS BY ADOPTING COMPARATIVE PLANNING

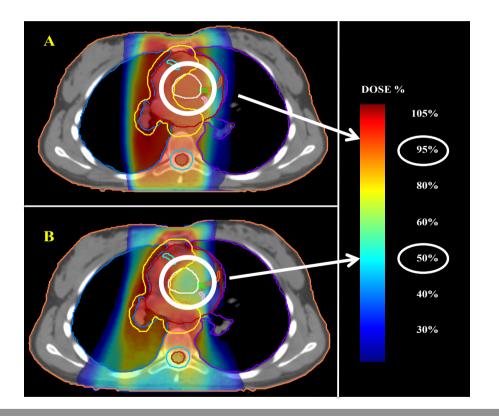


Evolution in the definition of RT volumes for lymphoma patients

Volume treated on the basis of anatomical borders

Involved site - Involved node 2010-nowadays

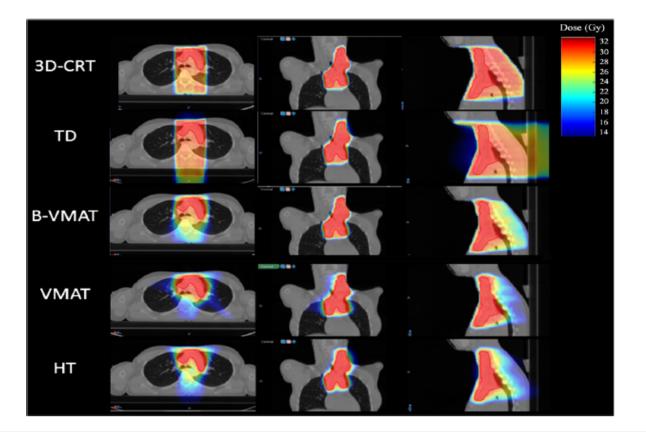
Targets of treatment are only lymph nodes and/or extranodal sites involved at baseline



THE CONFORMALITY CONTINUUM

DEPARTMENT OF ONC LOGY UNIVERSITY OF TURIN

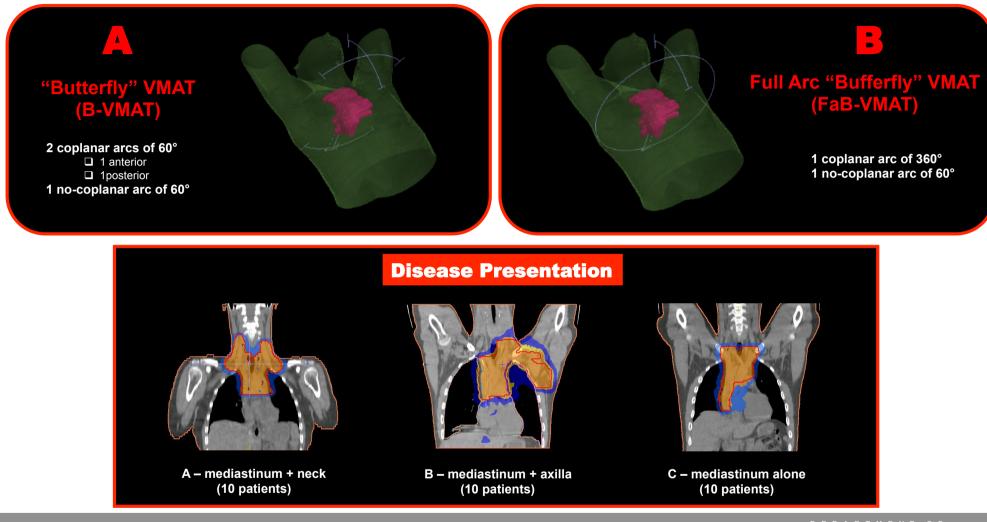
MODERN TECHNIQUES PLAY A MAJOR ROLE SINCE WHOLE HEART DOSE CANNOT LONGER BE ENOUGH...


Mean Heart dose similar for 3DCRT and VMAT but...

With VMAT we achieve a better sparing of:

- aortic valve
- Left main
- Proximal left descending
- Proximal circumflex

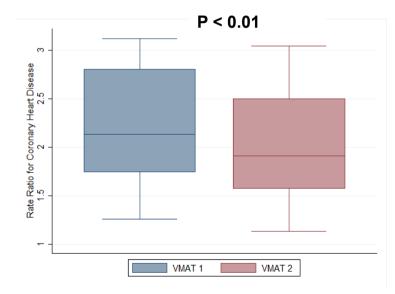
IMRT in HL: which technique is preferable ?

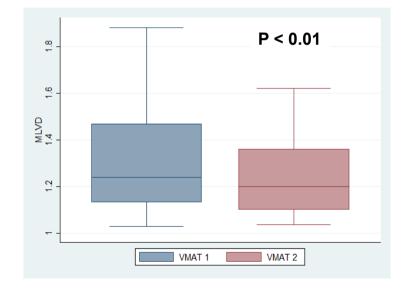

Fiandra et al, Radiation Oncology 2012

Which technique is preferable?

- **There is no single proven best planning and delivery RT technique**
- □ *No two lymphomas are the same* with regard to localization and extent of disease
- The decision should be made at the *individual patient level*, depending on:
 - > Age
 - > Gender
 - Comorbidities and risk factors for other diseases
 - Dosimetric data adapted for lymphoma patients

Levis M. et al. Oral Presentation – ESTRO37, Barcelona, Spain


RESULTS (Heart structures)


	STRUCTURE	PARAMETERS	B-VMAT (VMAT1)	FA (VMAT2)	p-value
	CORONARY ARTERIES				
	1) LEFT MAIN CORONARY	DMEAN (Gy)	19,5 ± 7,7	15,9 ± 7,5	0,0001
		DMAX (Gy)	25,8 ± 5,9	21,6 ± 7,4	0,0001
	2) LEFT ANTERIOR DESCENDING	DMEAN (Gy)	15,6 ± 9,0	13,2 ± 8,9	0,0001
	,	DMAX (Gy)	26,2 ± 8,5	21,9 ± 10,6	0,0001
worof	3) LEFT CIRCUMFLEX	DMEAN (Gy)	14,0 ± 8,6	10,7 ± 7,8	0,0001
avor of	\rightarrow \prec \rightarrow \rightarrow	DMAX (Gy)	22,7 ± 7,9	17,9 ± 9,0	0,0001
/MAT	4) RIGHT CORONARY	DMEAN (Gy)	17.0 ± 11.4	15,8 ± 11,6	0,005
	,	DMAX (Gy)	23,1 ± 11,5	20,9 ± 12,6	0,006
	5, CORONARY SUM (OVERALL)	DMEAN (Gy)	16.1 ± 9,3	13.5 ± 8,9	0,0001
	CHAMBERS				
	1) LEFT ATRIUM	DMEAN (Gy)	13,10 ± 6,73	11,11 ± 6,56	0,364
		DMAX (Gy)	29,25 ± 6,04	28,40 ± 7,13	0,775
vor of	2) LEFT VENTRICLE	DMEAN (Gy)	4,2 ± 4,7	3,4 ± 3,7	0,007
/MAT		DMAX (Gy)	4,2 ± 4,7 25,6 ± 9,8	21,9 ± 11,1	0,0001
/ IVIA I	3) RIGHT ATRIUM	DMEAN (Gy)	12,58 ± 7,29	11,9 ± 7,69	0,095
	S) NOT ATROM	DMEAN (Gy)	30,76 ± 5,46	$30,74 \pm 5,34$	0,899
	4) RIGHT VENTRICLE	DMEAN (Gy)	$50,76 \pm 5,46$ 7,3 ± 6,2	$50,74 \pm 5,54$ $7,0 \pm 6,1$	0,899
			, ,	, ,	
		DMAX (Gy)	31,1 ± 5,7	30,2 ± 6,9	0,08
vor of	VALVES				
	1) AORTIC VALVE	DMEAN (Gy)	15,7 ± 9,0	13,2 ± 8,7	0,0004
VMAT		DMAX (Gy)	23,3 ± 9,1	22,8 ± 10,0	0,42
	2) PULMONIC VALVE	DMEAN (Gy)	19,91 ± 7,75	18,69 ± 7,92	0,153
		DMAX (Gy)	28,35 ± 6,42	26,77 ± 7,06	0,135
	3) MITRAL VALVE	DMEAN (Gy)	8,97 ± 4,93	8,76 ± 7,48	0,939
		DMAX (Gy)	19,94 ± 6,02	14,95 ± 10,37	0,232
	4) TRICUSPID VALVE	DMEAN (Gy)	9,74 ± 8,5	9,40 ± 9,70	0,809
		DMAX (Gy)	16,86 ± 10,82	15,02 ± 11,7	0,068

Long term cardiac risk

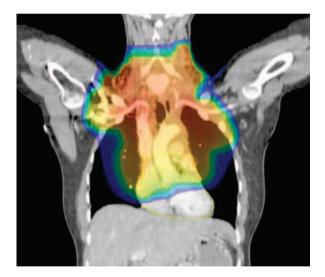
CAD risk

Levis et al. Oral Presentation – ESTRO37, Barcelona, Spain

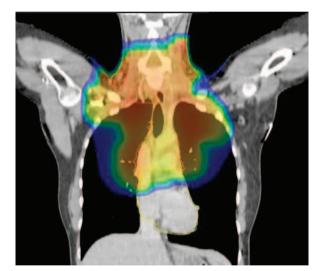
RESULTS (PTV and OARs)

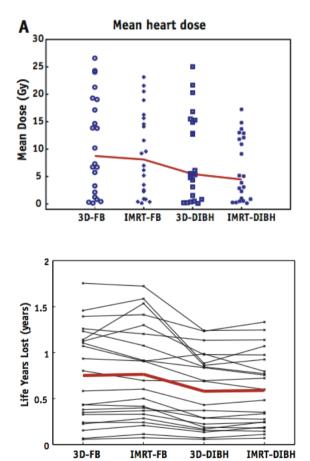
	STRUCTURE	PARAMETERS	B-VMAT (VMAT1)	FaB (VMAT2)	p-value
	ΡΤν	DMEAN (Gy)	30,4 ± 1,9	30,4 ± 1,8	0,694
		DMAX (Gy)	34,7 ± 2,1	34,6 ± 1,8	0,545
		V95 (%)	5,7 ± 5,2	5,4 ± 2,9	0,8
		V107(%)	2,0 ± 1,0	2,0 ± 1,5	0,875
In favor of	LUNG	D MEAN (Gy)	7,5 ± 1,9	7,5 ± 1,7	0,954
FA-VMAT		DMAX (Gy)	33,4 ± 2,2	33,7 ± 1,9	0,407
		V5 (%)	39,8 ± 9,5	41,1 ± 7,4	0,157
		V10(%)	27,9 ± 7,3	27,5 ± 7,1	0,393
		V20 _(%)	15,4 ± 5,9	14,4 ± 5,4	0,008
In favor of	BREAST	D MEAN (Gy)	2,8 ± 3,0	3,5 ± 2,7	0,033
B-VMAT		DMAX (Gy)	27,2 ± 9,5	27,7 ± 9,4	0,53
		V4 (%)	16,6 ± 16,1	22,2 ± 15,5	0,041
In favor of	HEART	D MEAN (Gy)	7,6 ± 5,1	6,9 ± 4,8	0,0028
FA-VMAT		DMAX (Gy)	32,8 ± 3,6	42,5 ± 55	0,34

Levis et al. Oral Presentation – ESTRO37, Barcelona, Spain



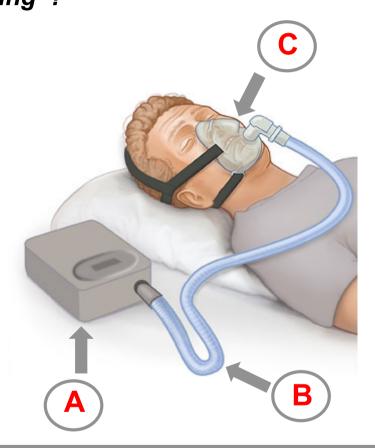
RESPIRATORY GATING (DIBH) INTEGRATED TO MODERN TECHNIQUES




Minimizing Late Effects for Patients With Mediastinal Hodgkin Lymphoma: Deep Inspiration Breath-Hold, IMRT, or Both?

FREE BREATHING

DIBH

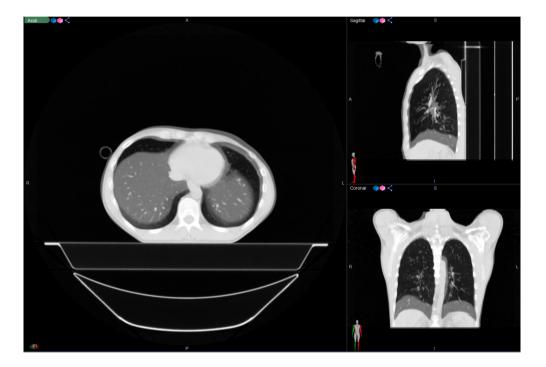


Aznar MC et al. IJROBP 2015

Continuous Positive Airway Pressure (C-PAP): A valuable alternative way for "respiratory gating"?

- CPAP has long been safely used in patients with respiratory failure, chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea (OSAS) to maintain airway patency.
- It provides a constant stream of pressurized air to the upper airways and lungs. The physiologic effects expected during CPAP are hyperinflation of the lungs, stabilization and flattening of the diaphragm, and decrease in tidal volume.
- **Components: air pump, tubing, facemask**

DEPARTMENT OF ONC LOGY


Respiratory gating @ UniTo: C-PAP & Radiotherapy

□ Prospective observational study

□ HL and PMBCL with mediastinal involvement

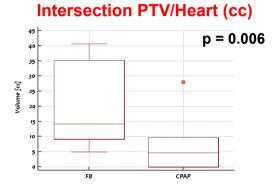
□ Airway pressure: 18 cmH₂O

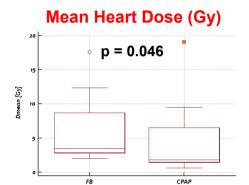
Dosimetric comparison of 2 different VMAT approaches: FREE-Breathing vs C-PAP

DEPARTMENT OF ONC LOGY UNIVERSITY OF TURIN

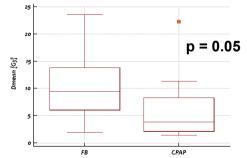
Free-Breathing With C-PAP MALE PATIENT FEMALE PATIENT

DEPARTMENT OF ONC LOGY UNIVERSITY OF TURIN

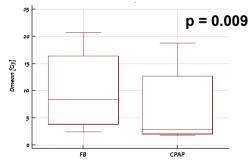

DOSIMETRIC COMPARISON (Lungs)

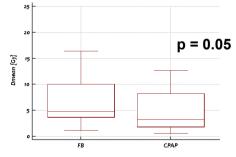


Preliminary results (10 patients) – submitted to ESTRO38, Milan 2019



DOSIMETRIC COMPARISON (Heart)

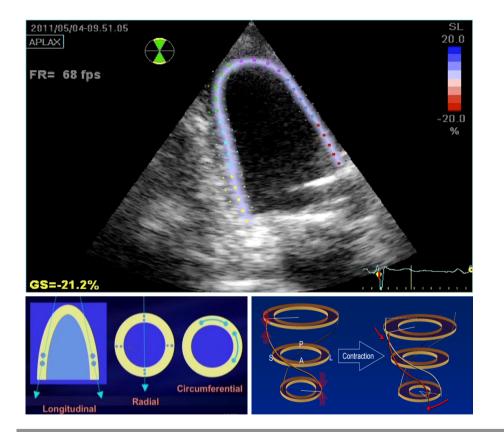



Aortic Valve (mean dose)

Left descending (mean dose)

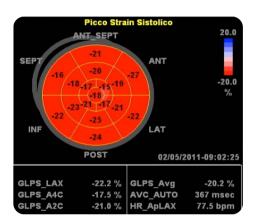
Preliminary results (10 patients) – submitted to ESTRO38, Milan 2019

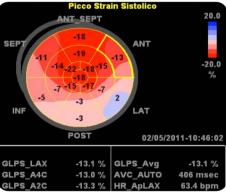
EARLY DIGNOSIS OF SUBCLINICAL "RIHD"



THE "ONE MILLION DOLLAR" QUESTION

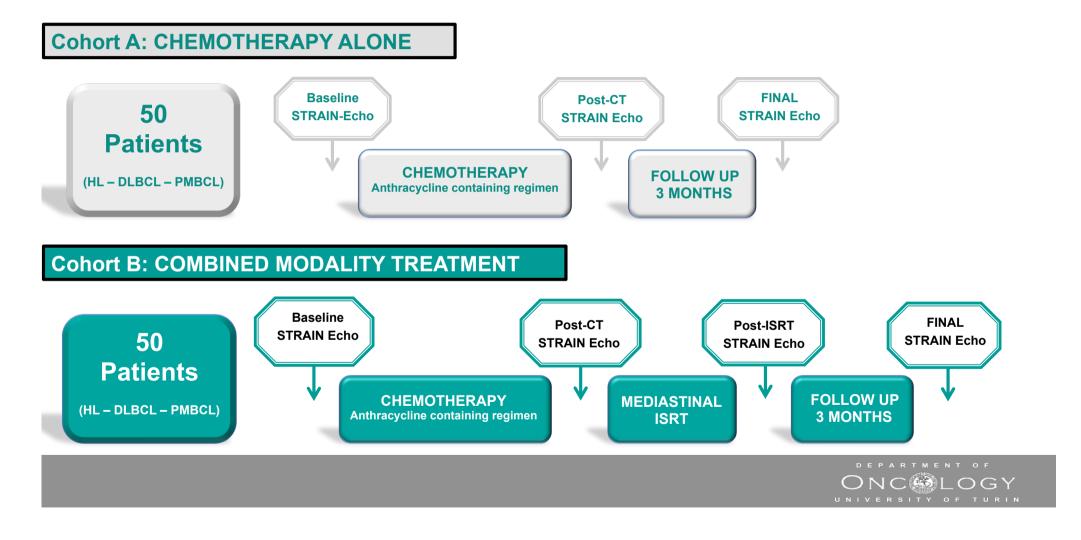
DO WE HAVE ANY TOOL TO DETECT TREATMENT RELATED HEART TOXICITY IN A PRECLINICAL PHASE?

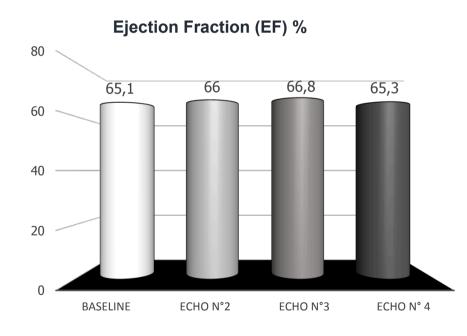

Advanced Ultrasound Imaging 2D Global Longitudinal Strain – "SPECKLE TRACKING"

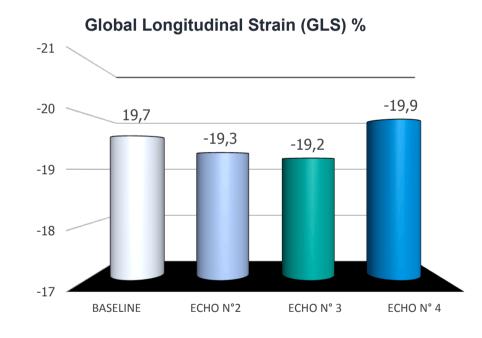


Normal GLS systolic peak

After STEMI


GLS systolic peak

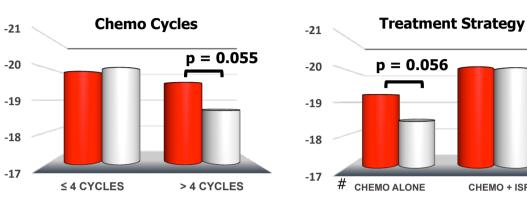

CARDIOCARE Project University of Torino



□ Interim results on **52** patients

- 24 in cohort A: Chemo alone
- 28 in cohort B: Chemo + ISRT

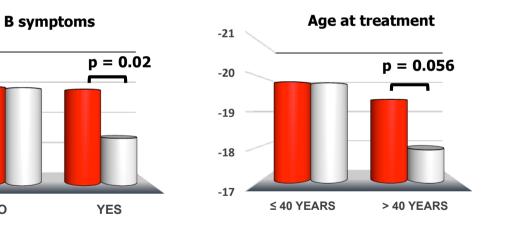
RESULTS (systolic parameters)



Levis M, et al. Oral communication, ASTRO 2018, San Antonio, USA

median anthracycline dose: 500 mg * median anthracycline dose: 400 mg

-21


-20

-19

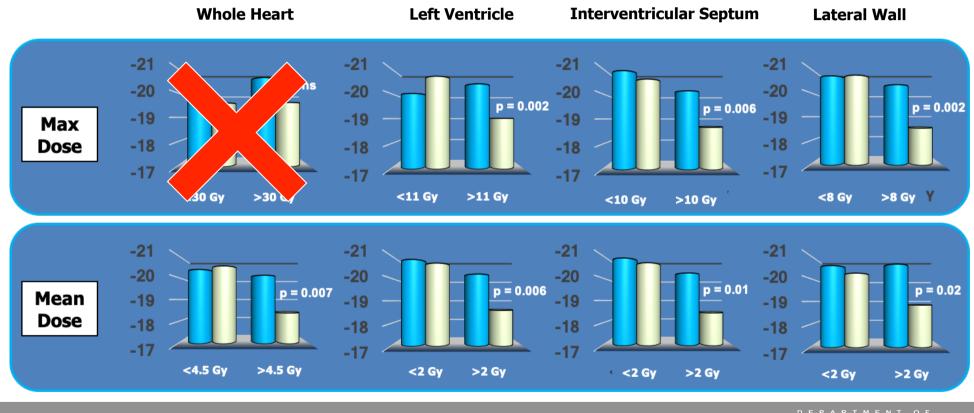
-18

-17

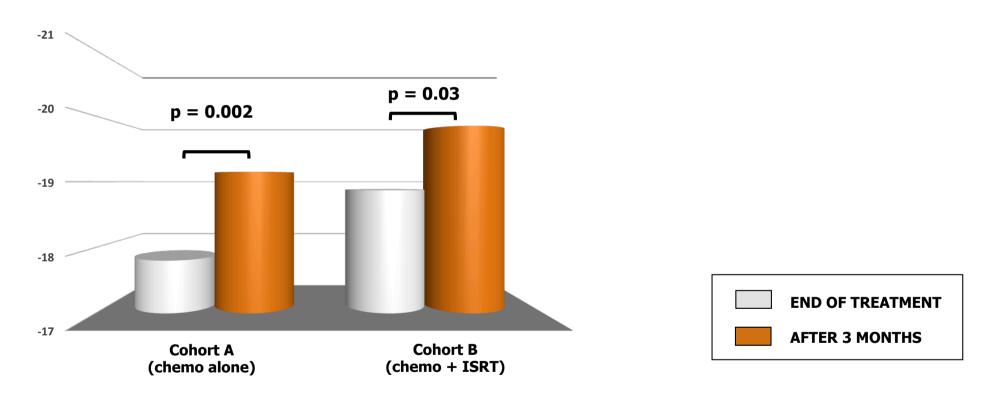
NO

*

CHEMO + ISRT



Levis M, et al. Oral communication, ASTRO 2018, San Antonio, USA


BEFORE ISRT

RESULTS (GLS changes after ISRT) Subgroup analysis

Levis M, et al. Oral communication, ASTRO 2018, San Antonio, USA

DEPARTMENT OF ONC LOGY UNIVERSITY OF TURIN **RESULTS** (GLS recovery 3 months after end of treatment)

Levis M, et al. Oral communication, ASTRO 2018, San Antonio, USA

Department of Radiation Oncology (Lymphoma Unit)

Prof. Umberto Ricardi

Dr.ssa Sara Bartoncini Dr.ssa Viola De Luca Dr. Alessio Gastino Dr. Andrea Riccardo Filippi Gabriella Furfaro

AKNOWLEDGMENTS

Department of Cardiology

Dr. Sebastiano Marra

Dr. Mauro Giorgi Dr.ssa Antonella Fava Dr.ssa Silvia Vicentini

Department of Hematology

Dr. U. Vitolo

Dr.ssa L. Orsucci Dr.ssa B. Botto Dr.ssa P. Pregno Dr.ssa A. Chiappella Dr.ssa F. Cavallo Dr. S. Ferrero Dr. D. Caracciolo Giorgio Priolo

DEPARTMENT OF ONCOLOGY

CONCLUSIONS

- 1) Based on the published data, THORACIC RADIATION THERAPY REPRESENTS A RISK FACTOR FOR LONG TERM CARDIAC EVENTS, and all the clinicians involved in the management of these patients should be aware of this information
- 2) "Modern" radiotherapy is **PROBABLY LESS TOXIC** compared to "older" approaches, but we must wait many years to confirm this assumption
- 3) Actual and future directions include a strong effort to contour the organs at risk (particularly, the cardiac substructures) of patients receiving mediastinal irradiation in order to obtain SPECIFIC AND CLINICALLY MEANINGFUL DOSE CONSTRAINTS, based on a correlation with clinically relevant cardiac events.
- 4) Need for new tools to detect CHEMO/RT INDUCED heart toxicity in a PRECLINICAL PHASE

